
November 1999
1

Notices

· Introductory Mobile
 Robotics Class -
 10:00AM - 12:00PM

· Business Meeting -
 12:30 - 1:00

· General Meeting -
 1:00 - 3:00

Distribution

If you would like to
receive The Robot
Builder via e-mail,

contact the editor at:

apendragn@earthlink.net

Inside this Issue

A Circular Navigation System
……………………………..1

Polly …………….….…….. 5

The Robot Builder
Volume Eleven Number Eleven November 1999

Introduction
Have you ever wanted your robot to
navigate accurately? Reliably moving to
locations within a room is difficult for most
robots. Usually they are not aware of their
location. In this series of articles, I will show
you how to solve the problem for indoor
robots.

Part one was the theory document and you
should refer to it when you have questions
about the mathematics. (see Sept 99 issue)
Part two provided instructions for building
the sensor unit, and included the
I/O driver software. (see Oct 99 issue)
This month we will add the capability to
report the robots location. Accuracy is plus
or minus a few inches within a typical room.

Skills Required
You will need certain minimum skills to
complete the device described in this
article:

Soldering, electronic grade.
Cutting plastic sheet.
Safety skills to avoid injuries.
Drilling holes.

Adding the Protractor Scale
Photocopy figure 1 and glue it to a thin
sheet of cardboard. Punch a hole in the
center and cut a slot to the edge. Slip the 3
inch diameter protractor under the disk of
the top servo. Attach with mounting tape.
Find a suitable material and attach a pointer
for reading the angles.

Note that this protractor has 256 divisions in

"A Circular Navigation System"
Part 3 - "Localization"

by Jim Ubersetzig

a complete circle. These divisions are called
"binary angle measurement" (BAM) and are
used by the Stamp II computer for the
trigonometry calculations. One BAM equals
approx. 1.4 degrees of angle.

Correction to Figure 6 of Part 2
In part two of this series of articles, a laser-
power-switch was mentioned two
paragraphs after figure 6. This switch was
omitted from the wiring diagram in figure 6.
Please install the laser-power-switch in
series with the red wire of the laser module.

Analytic Geometry
Analytic Geometry is the bridge between the
geometric argument stated in the 1993
theory document (reprinted in part 1 of this
series of articles), and numerical calculations
suitable for a computer.

The geometric figures of the theory
document can be drawn to scale on graph

See Circular, Page 2

November 1999
2

paper. Doing so illustrates that for each point on the
floor of the room, there are two numbers defining
the location of that point. Since the robot is on the
floor, our problem is to determine the two numbers
defining it's location.

First we have to establish a coordinate system (see
figure 2).

Circular from Page 1

Figure 2 - Coordinate System

The solution space for the (rx,ry) robot position is:
0 < rx < 127, -127 < ry < +127 where the unit is
the inch. Note that rx is the distance from the wall,
ry is the distance along the wall. This is
approximately a 10 by 20 foot room. Target 1 is at
(0,-48), target 2 is at (0,0), target 3 is at (0,+48).

Per the theory document, the robot is at the
crossing of two circles. C12 at position
(C12X,C12Y) is the center of the circle which
passes through targets 1 and 2 and the robot
position. C23 at position (C23X,C23Y) is the center
of the circle which passes through targets 2 and 3
and the robot position.

The laser scanner head measures angles A12 and
A23 in units of 1.406 degree. A12 is the angle
between targets 1 and 2 as seen from the robot
position. Similarly A23 is the angle between targets
2 and 3.

The Method - General
The solution proceeds as follows: First a table
lookup finds the centers of the circles from A12,
and A23. Next the equation for a line is found in
slope, X intercept form.

This is for the line passing through C12 and C23.
The argument is made that this line is the
perpendicular bisector of the line segment from
(0,0) to (rx,ry).

We proceed to find the intersection of these lines,
then from the known endpoint (0,0) and the
bisector, we find the other end of the line segment
at (rx,ry), which is the solution.

The Method - Details
Subroutine get_cx performs the table lookup, this
subroutine is used twice, to compute C12X and
C23X. The Y coordinates C12Y and C23Y are
precalculated and stored as constants.

We want the equation of a line passing through
circle centers C12 and C23. Because the line always
crosses the x axis, we want the line's equation in
slope, x intercept form. The equation is

x = my + Xint,

where the slope is:

 C23X - C12X N (numerator)
m = ------------------ = --- (equation 1)
 C23Y - C12Y D (denominator)

and
Xint = (C23X + C12X) / 2 (the X intercept)

Note that D can be precomputed and = Ta12,
which is the spacing between targets.

The other line we are interested in is the line
from (0,0) to the sensor assembly at (rx,ry).
Since this line is perpendicular to the other line,
their slopes are related by m = -1 / m.
Because the line passes through (0,0), the X
intercept = 0.

And the equation is
 -1
x = ----- y

 m

We want the point where the two lines cross, so we
combine the equations:

See Navigation, Page 3

November 1999
3

Navigation from Page 2

 -1
 ------ y = my + Xint
 m

or

N * Xint2 * Ta12 top
-2y = ----------------------- = --------- (equation 2)
 (TaSq + N^2) bottom

where N = C23X - C12X, Xint2 = 2 * Xint = C23X
+ C12X, and TaSq = Ta12 * Ta12.

-2y is the sensor assembly position ry coordinate.
the corresponding rx coordinate is:

 Ta12
rx = 2x = -2y -------

 N

There remain a few tricks required to get the correct
answer from the Basic Stamp 2 computer. First,
division only works if both numbers are positive.
For calculating -2y, the bottom is always positive.
We save the sign of the top and then make it
positive, then divide by bottom to get 2y. We
restore the sign of 2y later. Second, the Basic Stamp
2 uses 16 bit integer arithmetic. Because the
numbers top and bottom can be quite large - they
can sometimes be larger than the maximum 16 bit
number. Also the result dividing top by bottom has
precision only if top is substantialy larger than
bottom.

Avoiding these problems of integer arithmetic
requires careful management of the top and bottom
numbers. This is done by pre-divided top and
bottom to make them the correct size for an integer
division.

Loading the Software
On your PC type stamp2 <enter> and the stamp
development system will come up. If you don't have
this file (stamp2.exe approx 15K bytes), it's a free
download from the parallax web site. It also comes
with the developer's kit, along with the cable.

If you don't have the cable, instructions for building
one are on the web site. On your PC you should see
a screen for editing software. Type in the main
software listing (see above). Be sure to include the
software from part 2 of this series of articles - the

location for this is clearly marked.
Press ALT-S to save the software in a file. Type in a
suitable file name, then <enter>.

Demonstration
Tape three retroreflective targets on a wall. Space
the retroreflectors every 4 feet. Adjust the target
height to match the laser beam. The laser beam must
be parallel with the floor - adjust if necessary. Press
ALT-R on the PC. After the laser sweeps in a
complete circle, you should see a report on the PC
display screen.

Hit_index should be three (the number of targets
found). The number reported for RX is the distance
from robot to the wall. RY is the distance along the
wall measured from the middle target. Sign of zero
means that the robot is to the right of the center
target. Else the robot is to the left.

Error Messages
Sometimes instead of reporting the robot's position,
an error message appears. There are two kinds of
errors reported:

Cause Error Message RX value
Object blocks laser beam. Lost - can't find 3 targets. -1
Targets on two walls. Lost - targets on more than -2

one wall

If you choose to use this sensor on a robot, you can
write additional software which directly uses the
values of RX, RY, Sign. Check RX first - if RX.bit7
= 0, then the position reported is valid. Else check
for RX = 0xFF (-1) or RX = 0xFE (-2) to determine
the error.

The Future ?
Next month we will add the capability to navigate a
robot from it's present location to any desired
location. Accuracy is plus or minus a few inches
within a typical room.

Jim Ubersetzig
jim.ubersetzig@lmco.com

(661) 572-7184
(Code is continued on page 4)

November 1999
4

' Software to report the robots location.
' Accuracy is plus or minus a few inches within a typical
room.
' Software runs on a Stamp 2.

' By Jim Ubersetzig
' May 99

gosub locate

spin: GOTO spin

'-------------------------------
' Insert software from part 2 |
' of this construction article. |
' (must end with return) |
'-------------------------------

locate:
 gosub scan ' perform a complete laser scan of the room
 ' and measure the angles to the wall targets.

' code to decide if data from sensor head is sufficient
if hit_index = 3 then data_correction
 debug "lost - can't find 3 retroreflector targets",cr
 rx = -1
 goto locate2

data_correction:
for hit_index = 0 to 2 ' correct the measured angles
 hit(hit_index) = hit(hit_index) * 64 / 50
next

A12 var byte
A23 var byte

' code to decide which is target 1, target 2, and target 3
' and to calculate A12, A23 in units of 1.406 degrees.

if (hit(1) - hit(0)) < 128 then zzz1
A12 = hit(2) - hit(1)
A23 = hit(0) - hit(2) // 256
hit = hit(2) ' save angle to target 2
goto locate1

zzz1:
if (hit(2) - hit(1)) < 128 then zzz2
A12 = hit(0) - hit(2) // 256
A23 = hit(1) - hit(0)
hit = hit(0) ' save angle to target 2
goto locate1

zzz2:
if (hit(0) - hit(2) // 256) > 128 then zzz3

debug "lost - targets on more than one wall.",cr
rx = -2
goto locate2

zzz3:
A12 = hit(1) - hit(0)
A23 = hit(2) - hit(1)
hit = hit(1) ' save angle to target 2

locate1:
debug ? A12, ? A23

' these distances are in inches.
Ta12 con 48 ' distance between target 1 and target 2.
Ta23 con Ta12 ' distance between target 2 and target 3.
C12Y con -Ta12 / 2 ' y value for center of circle C12.
C23Y con Ta12 / 2 ' y value for center of circle C23.
TaSQ con Ta12 * Ta12 ' square of Ta12.

RX var byte ' robot position - distance from wall.
RY var byte ' robot position - distance along wall.
Sign var bit ' 0 -> + = to right of target 2.

SigBits con 9 ' bits of precision for result of
' integer division.

' solve for robot location (rx,ry)

' reuse these words of ram
C12X var angle ' x value of circle center C12.
C23X var reflection ' x value of circle center C23.

 RY = A12: A12 = A23: gosub get_CX: C23X = C12X
 A12 = RY: gosub get_CX ' calculate centers for both
 ' circles.

' reuse these words of ram
N var C23X ' numerator from equation 1.
Xint2 var C12X ' 2 times the X intercept.
 N = C23X - C12X
 Xint2 = N + C12X + C12X
 Sign = N.bit15 ' save sign (+/-) for N
 N = abs(N) ' must be + for division to work.

 if N <> 0 then continue
 ry = 0: rx = Xint2: goto done' special case if robot
 ' is on x axis.
continue:

' reuse this nibble of ram
log var hit_index
 log = NCD(N * N + TaSQ) + SigBits - 16 ' to prevent
 ' overflow.

' reuse this word of ram
top var Xint2 ' word
 top = Ta12 * Xint2 / DCD(log) * N ' top from equation 2.
 ry = top / (N * N + TaSQ / DCD(log)) ' top / bottom.
 rx = ry * Ta12 / N
 Sign = ~Sign ' robot is at rx, ry, sign of ry

done:
' solution for robot location is (RX, RY)
debug sdec ? RX, sdec ? RY, ? Sign

locate2: return

' This code gives the correct value for C12X (in inches)
' for 1 <= A12 <= 127 (in units of 1.406 degrees).
' Assumptions are Ta12 = 48 inches.
get_cx:
 if A12 < 65 then get_cx1
 read 128-A12 * 2, C12X.highbyte
 read 128-A12 * 2 + 1, C12X.lowbyte
 C12X = -C12X
 goto get_cx2:
get_cx1:
 read A12 * 2, C12X.highbyte
 read A12 * 2 + 1, C12X.lowbyte
get_cx2:
 return

 data 0,0, 3,210, 1,233, 1,69, 0,244, 0,195, 0,162 '0-6
 data 0,138, 0,121, 0,107, 0,96, 0,87 '7-11
 data 0,79, 0,73, 0,67, 0,62, 0,58 '12-16
 data 0,54, 0,51, 0,48, 0,45, 0,42, 0,40 '17-22
 data 0,38, 0,36, 0,34, 0,32, 0,31 '23-27
 data 0,29, 0,28, 0,26, 0,25, 0,24 '28-32
 data 0,23, 0,22, 0,21, 0,20, 0,19 '33-37
 data 0,18, 0,17, 0,16, 0,15, 0,14 '38-42
 data 0,14, 0,13, 0,12, 0,11, 0,11, 0,10, 0,9, 0,9 '43-50
 data 0,8, 0,7, 0,7, 0,6, 0,5, 0,5, 0,4, 0,4 '51-58
 data 0,3, 0,2, 0,2, 0,1, 0,1, 0,0 '59-64

' End of the software

November 1999
5

Historic Robots: Polly
Arthur Ed LeBouthillier

Polly was a robot built at MIT’s AI lab between
1992 and 1993 by Ian Horswill. It represented a
capable autonomous vision-guided robot able to
effectively navigate through its environment and
interact with people. As its designer said, “Polly was
designed to patrol the seventh floor of the
laboratory, find visitors, and give them tours.[2]” It
did this with only a single on-board processor. It
gave hundreds of tours and rolled throughout the
lab for upwards of 2 hours continuously before its
batteries needed charging.

Polly’s hardware was not so unique, based on a
commonly-used, off-the-shelf B12 robot base made
by RWI. It used an off-the-shelf TMS320C30 DSP
card as the main processor. The processor was used
to capture an image from a camera and perform all
of the necessary decision-making and generate the
motor commands.

What made Polly so capable was the innovative
vision system able to differentiate between the floor
and obstacles, identify people by their movement
and use its knowledge of obstacles to navigate
without a map.

Polly’s Vision System
Polly’s vision system was based on a simple idea:
“…take an image, use some criterion to discard
pixels that look like the floor, and avoid driving
toward the remaining pixels[1].” Polly’s camera
generated images which were sent to the main
processor through a frame grabber. It provided
medium-resolution images which were sub-sampled
down to 64 X 48 pixels with 15 gray levels.

The key to making the whole system works lies in
the ability to distinguish the floor from non-floor
objects. In order to do this, Polly used two
simplifying assumptions: the Ground Plane
Constraint and the Background Texture Constraint.
The Ground Plane Constraint assumed that all
obstacles rest on the ground plane and are

completely contained within the boundary region
where they contact the floor. The Background
Texture Constraint assumed that the environment is
uniformly lighted and the ground has no texture that
cannot be thresholded out easily. As long as the
world reflected these constraints, Polly was able to
identify the floor and, therefore, avoid all non-floor
pixels.

In reality, the world doesn’t meet the two
constraints and so Polly failed in its task at times. A
table, for example, does not meet the Ground Plane
Constraint because the tabletop does not contact the
floor. Tables were a danger for Polly because it
could only see the table’s legs but would hit the
horizontal tabletop. The Background Texture
Constraint was also not always met because floor
reflections, shadows or floor stains would create
apparent false obstacles.

Once Polly took a picture, it would threshold the
image to signify the difference between the floor
and non-floor. It was then a simple process to scan
vertically from bottom to top to identify the nearest
object in the visual field. Knowing this, the program
then classified obstacle characteristics by the
following criteria:

open-left? open-region? open-right?
blind? wall-ahead? blocked? light-floor?
wall-far-ahead? left-turn? dark-floor?
right-turn? farthest-direction

Using these criteria, the robot could then test a
number of conditions to generate the proper motor
commands. Polly recognized people due to the fact
that they moved in its field of view from frame to
frame; otherwise, it recognized them as obstacles. It
recognized corridors by looking for a boundary
between the floor and obstacles which extended
towards the horizon.

In figure 1, an image has been thresholded, creating
See Polly, Page 6

November 1999
6

Figure 1 - The world as seen by Polly

an image where obstacles are white and the floor is
black. Polly then scanned from bottom to top to
identify the closest objects to the left, center and
right. Using this knowledge, it could generate motor
commands to turn left, right or to turn around. Polly
performed these routines 15 times per second.

Place Recognition
Another feature implemented in Polly was place
recognition. Polly was able to recognize particular
corridor features such as intersections and corners
so that it could plan on visiting various places and
reference its generated speech. It did this by having
a store of low-resolution images of features such as
an intersection of two hallways. The most recent
image frame was constantly compared against
several different corridor images and a close match,
coupled with the robots knowledge of its location
and other general features, indicated that the robot
was at a particular place.

Corridor Following
Polly also had a corridor recognition algorithm
which identified corridors by searching for
converging lines that projected to the horizon.
Knowing this information, Polly could orient itself
in the corridor and ensure proper navigation down
the center.

Motor Control Generation
Polly’s motion was controlled by three separate
systems. The Corridor Follower caused Polly to
continuously move forward and stay in the center of

a hallway. The Obstacle Avoider kept the robot a
certain distance from obstacles and would even
cause Polly to back up if someone got too close. A
Turn Controller took over in order to allow
controlled turns at key places (i.e. hallway corners
and intersections). An overall goal control system
mediated between these systems in order to make
the robot go from one place to another, based on
either recognition of the place or knowledge of its
approximate coordinates.

Performance
Polly ran at upwards of 1 meter per second and was
able to operate in the corridors of the MIT AI
building for hours at a time. During its operational
period, it conducted hundreds of tours. Variations
of this navigation scheme have been used on other
robots and have demonstrated long-duration,
capable, autonomous vision-based navigation.

Summary
Polly represents a capable vision-guided robot
which operated in realtime. Because of the low
image resolution, the processing system was able to
constantly take an image, determine obstacles and
generate motor commands rapidly. The techniques
developed for Polly have applications for hobbyist
robots since low processing power is needed to
create a robot that visually avoids obstacles in real-
time.

References
[1] Horswill, Ian. “Visual Collision Avoidance by Segmentation”
May 26, 1994.
[2] Horswill, Ian. “The design of the Polly system -draft-“ April 30,
1996.

Polly from Page 5

November 1999
7

Robotics Society of Southern California

President Randy Eubanks

Vice President Henry Arnold

Secretary Arthur Ed LeBouthillier

Treasurer Henry Arnold

Past President Jess Jackson

Member-at-Large Tom Carrol

Member-at-Large Pete Cresswell

Member-at-Large Jerry Burton

Faire Coordinator Joe McCord

Newsletter Editor Arthur Ed LeBouthillier

The Robot Builder (TRB) is published monthly by the
Robotics Society of Southern California. Membership in the
Society is $20.00 per annum and includes a subscription to
this newsletter.

Membership applications should be directed to:

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799-6044

Manuscripts, drawings and other materials submitted for
publication that are to be returned must be accompanied by a
stamped, self-addressed envelope or container. However,
RSSC is not responsible for unsolicited material.

We accept a wide variety of electronic formats but if you are
not sure, submit material in ascii or on paper. Electronic
copy should be sent to:

apendragn@earthlink.net

Arthur Ed LeBouthillier - editor
The Robotics Society of Southern California was founded in 1989 as a non-profit experimental robotics group. The goal

was to establish a cooperative association among related industries, educational institutions, professionals and particularly robot
enthusiasts. Membership in the society is open to all with an interest in this exciting field.

The primary goal of the society is to promote public awareness of the field of experimental robotics and encourage the
development of personal and home based robots.

We meet the 2nd Saturday of each month at California State University at Fullerton in the electrical engineering building
room EE321, from 12:30 until 3:00.

The RSSC publishes this monthly newsletter, The Robot Builder, that discusses various Society activities, robot
construction projects, and other information of interest to its members.

Membership/Renewal Application

Name

Address

City

Home Phone () - Work Phone () -

Annual Membership Dues: ($20) Check #
(includes subscription to The Robot Builder)

Return to: RSSC
POB 26044
Santa Ana CA 92799-6044

How did you hear about RSSC? __

November 1999
8

Please check your address label to be sure your subscription will
not expire!

RSSC
POB 26044
Santa Ana CA 92799-6044

